Prepare covariance for CLA
use nalgebra::DMatrix;
use openquant::cla::covariance;
let returns = DMatrix::from_row_slice(3, 2, &[0.01, 0.02, -0.01, 0.01, 0.015, 0.03]);
let sigma = covariance(&returns); Portfolio Construction and Risk
Critical Line Algorithm implementation for constrained mean-variance optimization.
CLA solves constrained Markowitz problems efficiently with active-set style line updates.
CLAcovarianceReturnsEstimation\[\min_w\;\frac{1}{2}w^T\Sigma w-\lambda\mu^T w\]
\[\mathbf{1}^T w=1\]
use nalgebra::DMatrix;
use openquant::cla::covariance;
let returns = DMatrix::from_row_slice(3, 2, &[0.01, 0.02, -0.01, 0.01, 0.015, 0.03]);
let sigma = covariance(&returns);