Create regression fingerprint
use openquant::fingerprint::RegressionModelFingerprint;
let fp = RegressionModelFingerprint::new(&model, &x);
let effects = fp.linear_effects()?; Sampling, Validation and ML Diagnostics
Model fingerprinting for linear, non-linear, and pairwise feature effects.
Quantifies behavior of fitted models beyond scalar accuracy metrics.
RegressionModelFingerprintClassificationModelFingerprintEffectPairwiseEffect\[f_j(x_j)=E_{X_{-j}}[f(X)|X_j=x_j]\]
\[I_{ij}=f(x_i,x_j)-f_i(x_i)-f_j(x_j)\]
use openquant::fingerprint::RegressionModelFingerprint;
let fp = RegressionModelFingerprint::new(&model, &x);
let effects = fp.linear_effects()?;