OpenQuant Docs banner
OpenQuant icon openquant-rs / documentation terminal

sampling

Sampling, Validation and ML Diagnostics

Indicator matrix and sequential bootstrap tooling.

Why This Module Exists

Produces less correlated training samples when labels overlap heavily in time.

Key Public APIs

  • get_ind_matrix
  • seq_bootstrap
  • get_ind_mat_average_uniqueness
  • num_concurrent_events

Core Math

Average Uniqueness

\[u_i=\frac{1}{|T_i|}\sum_{t\in T_i}\frac{1}{c_t}\]

Sequential Draw Prob

\[P(i)\propto E[u_i \mid \mathcal{S}]\]

Code Examples

Run sequential bootstrap

use openquant::sampling::seq_bootstrap;

let ind = vec![vec![1,0,1], vec![0,1,1], vec![1,1,0]];
let idx = seq_bootstrap(&ind, Some(3), None);

Implementation Notes

  • Indicator matrix quality drives bootstrap quality.
  • Use average uniqueness as a diagnostics KPI.